techdrives drives and components
About us Panasonic products Linear motion Shaft couplings Shaft Connections Signalling & Displays Clutches & Brakes Gears/geared motors Torque limiters Applications News2017
About us Products Applications News Downloads & Links Contact


01234 753201

Applications Railway points tester
Locking bushes Clutches & Brakes Panasonic products Torque limiters Linear motion Gears/geared motors Screw Jacks Signalling & Displays

Actuators that switch railway points are clearly mechanisms that are highly safety-critical. Proof that these actuators meet the exacting railway standards required is one of the main functions of a new test system designed by QM Systems Ltd with motion technology from Lenze Ltd. At the same time QM were able to reduce the time for tests by a factor of 3, reducing the operator workload and increasing safety. The latest techniques in control, recording and reporting were employed with a particular innovation in the operation of the Lenze servo drive.

“QM’s success is built on ground breaking innovation” explains Nick Field the Managing Director of QM Systems Ltd. He adds “We are unique in our ability to deliver fully integrated solutions involving mechanical, electronic and software components”. QM Systems as a company began in the 1980’s with high technology products and software, particularly in the fields of high integrity electronic test. More recently they have established an Automation division that specialises in the design and manufacture of  automation and test solutions often operating in harsh or safety critical environments. Today they operate from two sites in Aldershot and Holt Heath in Worcestershire.

Point changers perform the simple task of moving railway tracks, but must do so with high dynamic forces, with highest reliability and comprehensive safety monitoring. They operate from a 110V DC supply with a “throw bar” that moves the rails exerting a force around 3kN. The sideways axial movement is created by a ball screw that is driven from a DC motor and the position is monitored by safety relays.

QM were presented with the challenge of testing the point changers in a way that would be credible to a conservative and highly safety conscious worldwide market. The new test system had to be accurate, with precise measurements recorded and reported. The test process had to be faster than the 1.5 hours previously taken, yet should provide a step change in safety with  a minimum of manual handling. Both trackside and in-track changers should be tested, also both old and new designs.

The new test systems connects to point changers that are brought in on wheeled trollies These are accurately located on dowel pins followed by mechanical connection of the throw bar and electrical connection to the motor. External resistance to the throw bar is provided by a motorised ball screw linear actuator carefully controlled to deliver a programmed stroke/force profile. The points changer is zeroed and then driven to the closed position. Stroke measurement is done through an encoder and the stroke defines the changer model for the test report. The operator manually adjusts the torque limiting clutch in the changer to trip at a force that is dialled up on one of the two touch screen operator stations. Software utilises National Instruments test solutions . Electrical functionality of the points changer is tested automatically including the safety limit switches.

The drive technology supplied by Lenze is centred on the linear actuator. This is manufactured by specialist company Servomech s.p.a. and features a ball screw mechanism which allows continuous operation and low backlash. Dynamic rating is above 10kN with a linear speed of 78mm/s. The actuator is fitted with an asynchronous AC motor with incremental encoder and blower, suiting continuous operation at low speed. The motor is driven by a servo inverter from the Lenze 9400 series which is capable of delivering controlled torque and force at zero speed. QM utilise an accurate load cell between the linear actuator and a bar which simulates the moving rail, fitted on linear bearings to avoid side loads to the load cell.

“The key factor to the success of the test system is a complex control algorithm that is used to simulate a rail” comments Mr Field. It is possible to program any load up to 25KN although 4kN is often the simulated load used. The drive runs in servo mode and particularly clever programming of the PID control loop has been applied. Effectively this makes the actuator into a constant force spring opposing the force of the throw bar, a spring that can move in either direction through a stroke of up to 150mm. Under test the points changer starts from standstill and moves through the stroke in 3 seconds whilst the actuator delivers a constant resistive force. According to Mr Field, “One of the problems we solved was the unpredictable nature of the mechanics. This was overcome by the flexibility of the drive software”. Programming of the PID Loop was fine tuned in the function blocks of the Lenze L-force Engineer software.

The machine gives test results in the form of a two page data sheet that includes the measured forces, the settings for the torque limiting clutch and all the electrical characteristics including flash, bond and continuity. These results give visual evidence of quality and are a major help to increasing the sales of points changers. However the QM test system has achieved much more. As a result of the easy handling, the time to test is reduced from 1.5 hours to 30 minutes, and only one operator is required instead of the previous two. Comprehensive guarding with light beams and safety interlocks together with elimination of heavy lifting looks after the welfare of the operators. The success of the machine has opened the door for further similar test systems worldwide.